Поиск по МГУ | Лента новостей | В картинках | Работа | Форум | MsuWiki | Карты | Ссылки | Партнеры | О проекте
Новости
Университет
Карьера
Поступление
Наука
Интернет
Происшествия
Космос
Спорт
Строительство
Филиалы

Факультеты
Институты

MsuWiki
Университет
Работа
Поступление
Учеба
Студенты
Выпускники
Наука
Конференции
Культура
Спорт
Интернет

Факультеты
Институты
Центры
Филиалы


Наука

Галактики в обзоре SDSS.
Галактики в обзоре SDSS.
Фото с сайта: www.gazeta.ru www.gazeta.ru
Российские астрономы из ГАИШ МГУ имени М.В. Ломоносова разработали методику определения структуры галактик
13.11.11 12:53 | MsuNews.Ru

Астрофизические объекты невозможно непосредственно потрогать или задействовать в экспериментах. Об их физических свойствах или расстоянии до них можно судить или по прямым наблюдениям, или по некоторым косвенным признакам.

Российские астрономы из Московского государвственного университета имени М.В. Ломоносова Игорь Чилингарян и Иван Золотухин, обработав данные относительно 200 000 галактик, разработали методику, которая позволит определять структуру далеких галактик, расстояние до них и другие важные параметры, сообщает издание «Газета.ru». Соответствующая публикация вышла на минувшей неделе в престижном журнале Monthly Notices of the Royal Astronomical Society.

Для определения расстояний до далеких галактик использовал переменные звезды – цефеиды. Относительно этих звезд известна зависимость «период – светимость», поэтому если с помощью наблюдений можно узнать период колебания блеска звезды, то из него можно определить сначала светимость, а затем и расстояние до нее и, следовательно, до всей галактики.

Подобная стратегия использовалась в конце XX века астрономами, которые определили, что Вселенная не просто расширяется, а делает это с ускорением. Это открытие было сделано учеными в результате исследований далеких галактик, а для определения расстояний до них использовались сверхновые типа Ia, которые обладают свойством «стандартной свечи», то есть имеют примерно одинаковую светимость в максимуме блеска.

Но далеко не во всех наблюдаемых галактиках видны такие «маяки», как цефеиды или сверхновые. Современные телескопы позволяют обнаруживать галактики на таких огромных расстояниях, что весьма затруднительно не только исследовать структуру, но и фиксировать даже такие мощные выбросы энергии, как взрыв сверхновой, не говоря уж о том, чтобы изучать цефеиды.

Изображений далеких галактик, полученных наземными телескопами, оказывается недостаточно для определения их морфологических типов и оценки расстояний до них. Эти задачи требуют привлечения дополнительных данных, таких как прямые изображения и спектральные наблюдения высокого разрешения, полученные при помощи космического телескопа. Но в настоящее время астрономам известны многие миллионы галактик – понятно, что физически невозможно пронаблюдать каждую из них на космическом телескопе «Хаббл».

Тем не менее, некоторые сведения о морфологии галактик можно получать по результатам фотометрических наблюдений, поскольку цвет отдельной галактики связан с ее морфологическим типом и определяется в первую очередь историей звездообразования в ней. В 1999 году на основе наблюдений порядка 1000 галактик на космическом телескопе имени Хаббла астрономы построили диаграмму, связавшую цвета галактик, их морфологические типы, светимость и другие параметры. А в 2001 году были представлены результаты работы группы ученых во главе с Искрой Стратевой (Германия), которая опубликовала результаты анализа почти 150 000 изображений галактик, полученных в ходе обзора Sloan Digital Sky Survey (SDSS).

Для этих галактик была построена диаграмма, связавшая показатели цвета галактики в оптике (использовалась разность потоков в фильтре g, т.е. зеленая область спектра, и r, красная область спектра) со светимостью галактики. На этой диаграмме были выявлены две четкие области. Первая – «красная последовательность» (Red sequence), которую в основном составляют более старые галактики, эллиптические и линзовидные, где нет областей текущего звездообразования. Другая область – «синее облако» (Blue cloud), которую населяют в основном более молодые спиральные галактики, где звездообразование происходит и в настоящее время.

Используя такую диаграмму, можно, получив из наблюдений показатели цвета галактики и ее звездную величину, немедленно определить, к какому морфологическому типу она относится, какая у нее структура, какого она возраста. Однако для полноценной классификации галактик эту диаграмму использовать нельзя по целому ряду причин. Она не дает однозначного соответствия между положением галактики на диаграмме (т. е. цветом галактики и ее яркостью) и ее морфологическим типом (например, обычно спиральные галактики средних размеров имеют голубой цвет, но все же иногда среди них встречаются и красные объекты).

В целом около 25% галактик на «красной последовательности» являются спиральные, в т. ч. видимыми с ребра, хотя основная масса таких галактик находится в «синем облаке»: их цвета «краснеют» за счет поглощения излучения космической пылью. К тому же «синее облако» имеет область пересечения с «красной последовательностью»: туда попадают галактики, в которых звездообразование завершилось по галактическим меркам совсем недавно – несколько сот миллионов лет назад.

Чтобы избежать этих проблем, российские астрономы Игорь Чилингарян и Иван Золотухин, ученые ГАИШ МГУ имени М.В. Ломоносова, работающие кроме Московского университета в Гарвард-Смитсонианском астрофизическом центре (США) и Парижской обсерватории (Франция), сделали такую диаграмму не плоской, а трехмерной, добавив туда показатели цвета в ближнем ультрафиолете.

Работа проводилась с использованием методов Виртуальной обсерватории. Одним из примеров эффективности таких методов можно назвать более раннее исследование Игоря Чилингаряна и его коллег, в которых описывалось открытие более двух десятков новых уникальных объектов, компактных эллиптических галактик, выполненное при помощи Виртуальной обсерватории. Используя технологию Виртуальной обсерватории, астрономы открыли более двух десятков новых уникальных объектов, компактных карликовых галактик.

В своей работе Чилингарян и Золотухин использовали Виртуальную обсерваторию для построения многоволнового каталога галактик путем кросс-идентификации объектов в трех крупных фотометрических обзорах: NASA Galaxy Evolution Explorer (ультрафиолетовый диапазон), Sloan Digital Sky Survey (оптический диапазон) и UK Infrared Telescope Deep Sky Survey (ближний инфракрасный диапазон). «Мы составили каталог из более чем 200 000 галактик.

„После этого мы тщательно изучили то, что у нас получилось и обнаружили, что подавляющее большинство этих галактик имеют связь между показателями цвета в оптике и ультрафиолете, а также светимостью, и все это также связано со свойствами галактик и их морфологией“, – рассказывает Иван Золотухин. К широко используемой астрономами диаграмме „цвет в оптике – звездная величина“ мы добавили еще одну размерность – „цвет в ультрафиолете“, – объясняет университетский ученый.

Если галактики на двумерной плоскости разбились на две значимые области, то в трехмерном пространстве они неожиданным образом легли вдоль тонкой гладкой поверхности, указывая на новую, непонятную пока закономерность». «Наша работа позволит астрономам классифицировать миллионы галактик и определять до них расстояния, используя только их изображения», – говорит Игорь Чилингарян.

«Для далеких галактик, структуру которых мы не можем увидеть напрямую, теперь возможно определить их морфологический тип (то есть узнать, является ли звездная система спиральной или эллиптической), лишь измеряя их поток. Еще один плюс нашей работы состоит в том, что теперь будет легко идентифицировать представителей редких типов галактик (таких, как, например, компактные эллиптические галактики), так как они находятся обособленно на нашей трехмерной диаграмме. Физическая природа отрытой нами тесной фотометрической зависимости пока не ясна – она представляет собой очередной вызов для теоретиков и исследователей, занимающихся численным моделированием эволюции галактик», – рассказывает исследователь.

Еще недавно, компиляция такого каталога, как созданный в рамках данного исследования, потребовала бы гигантского труда, непосильного для двух астрономов еще каких-нибудь 10 лет назад. Теперь, благодаря возможностям, предоставляемым Виртуальной обсерваторией, делать такие открытия стало возможным с меньшими затратами и за более короткое время.



Присоединяйтесь к нам в соцсетях:
FacebookTwitterВконтактеTelegramInstagram


Новости раздела

Нейросеть помогла ученым МГУ имени М.В. Ломоносова найти 20 новых аномальных зон на Луне
29.09.25 00:19 | MsuNews.Ru
Исследователи Московского государственного университета им. М. В. Ломоносова смогли с помощью нейросети обнаружить на Луне 20 новых аномальных областей, заставляющих спутники отклоняться от орбиты. Об этом сообщили ТАСС в пресс-службе МГУ.

На околоземную орбиту выведен спутник МГУ имени М.В. Ломоносова «Монитор-1» для мониторинга радиационно-опасных потоков протонов
10.08.22 00:07 | MsuNews.Ru
По сообщению интернет-издания Научная Россия, со ссылкой на информацию пресс-службы МГУ, 9 августа 2022 года с космодрома Байконур состоялся успешный запуск ракеты-носителя «Союз-2.1б». На орбиту был выведен космический аппарат МГУ имени М.В.

Старший научный сотрудник ГАИШ МГУ имени М.В. Ломоносова выдвинул гипотезу о причинах ускорения вращение Земли
06.08.22 18:00 | MsuNews.Ru
Скорость вращения нашей планеты периодически меняется. Эти изменения незаметны обычным людям, но играют важную роль для спутниковых навигационных систем. Рекорд был установлен 29 июня. В этот день сутки оказались короче чем обычно на 1,59 миллисекунды.



Rambler's Top100
 
© 2003−2023 MsuNews.Ru – Новости МГУ
© 2003−2023 Разработка и дизайн – MMForce.Net
О проекте | Обратная связь | Разместить рекламу
Условия использования | Экспорт новостей (RSS)